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PARALLEL PLATES IN A TRAVELING MAGNETIC FIELD
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Introduction. Turbulent flow in a traveling magnetic field has been investigated in a
number of studies [1-4]. It is shown in [1] that for a small variation of the induction along
the gap height (gap small compared to the pole division and large compared to the depth of
penetration of the field) the dependence of the hydraulic drag coefficient on the nondimension-
al similarity criteria, i.e., Reynolds number Re and Stewart number St, is the same as for a
constant field. The Stewart number is computed from the effective value of induction of the
total magnetic field and the velocity of the electrically conducting fluid. It is noted in
{2] that the analysis carried out in [1] does not take account of the motion of the field
relative to the fluid with required degree of completeness; in view of this a modified Stewart
number Sty = Sts/(1 — s) is introduced. In [3] a range of variation of the parameters is de-
termined, in which the viscous dissipation in the channel is the same as in the absence of
the field, which leads to a dependence of the hydraulic drag coefficient of the same form as
in [1] for plane flow. In [4] a correction to the shearing stress tensor [1] is obtained which
depends on the ratio of the time scale of the turbulence to the period of the field.

In the present article the problem of computing the dependence of the hydraulic drag
coefficient on the governing parameters is formulated based on the solution of differential
equation of motion of Reynolds.

1. System of Equations and Algorithm for Computation. A schematic of the flow is
shown in Fig. 1. The external magnetic field is given in the form [5, p. 322]

H0x= _le Sh az,ei(mt—ax) s Hl]y:(], H“z= Hm chaz- e'i(mt—a,x) .

Here Hp is the amplitude of the intensity of the external magnetic field at z = 0; a = 7/7;

T is the pole division; w is the ‘frequency of the traveling field. The velocitity vector is
of the form v = (u(z),0,0). We write the induced field h = (hx, 0, h,) in the form of a wave
traveling along the x axis:

hy =R eilot—ax) s hz = h,eilot—ox)

Here hy(z), h,(z) are the complex amplitudes of the induced field intensity. The projection
of the induction equation, written in nondimensional form, on the z axis gives [5, p. 323]:
?h/d22—g*{A+iR(C—i) [ch gz +A]} =0,
_ h
F=l =t .
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s is the slip, ¢ is the electrical conductivity, and ug is the velocity of the traveling
field.

Making use of div h = 0 and the condition of perpendicularity of the lines of force to
the ferromagnetic wall of the channel, we get

2==40, Oh,/0z=—0hy/dx=iah,=0.
Therefore, for Eq. (1) we have the boundary condition
dr/dz2=0, 2zZ=1. (2)
Form the condition of symmetry we have
dr/dzZ=0, 2=0. (3

Let us write the equation of motion. For this purpose we must determine the electromag-
netic force density (f) averaged over a period of the field. As usual we put

E>="/; Fte {j X B*}. (4)

Making use of j = curl h and (1) we get

1 00)3,,3( au )
- Pl NV 113 5
D=5 - ) Al &)
Here |H|? = (chqZ+ hr)? + h,? is the squared modulus of the amplitude of the total magnetic
field), By= pHy, h = hy + ihg.

We write the projection of the equation of motion on the x axis in the form

drxz/d2+(E)c—Op/ox=0.
Here 3p/9x is the pressure gradient; Ty, = 17 + T, is the total shearing stress due to fric-
tion; 17 = ndu/dz, n = vp is the dynamic viscosity coefficient; Tt=—p{u'w’) .

For the turbulent stress we use the Prandtl formula Ty = pl?|du/dz|du/dz, where I is the
length of the displacement path. Using (5) and reducing the equation of motion to the non-
dimensional form, we get

d 1,
& (ie““

da| \ dz ] A
| )52 | +stc-m1ap+5=o 6)

277



Here Re = 8U./v is Reynolds number; St l/achmzé/pUc, Stewart number computed from the ef-
fective value of the external field; A = —(3p/3x)8/(pUs?/2), nondimensional pressure gradi-
The boundary conditions for the velocity are:

i (1) =da/dz (2=0) =0.

Equation (6) differs from the corresponding equation of motion in a constant field particu-
larly in the fact that the integral of the electromagnetic volume force over the entire depth
of the channel does not vanish and, therefore, there is no explicit relation between X and
the frictional stress at the wall of the channel.

Integrating (6) from O to Z and introducing the new variable

z
3(5) =5t | (C—a)| Az,
1]

we obtain a system of equations equivalent to (6):

&(2) g;‘;+ﬁ+—}§=o; %%-St(c—ﬁ) |A}2=0. N
Here we have used the notation
£(Z) =1/Re+R|da/dZ|. (8)
The boundary conditions are:
a(1)=o(0)=0. (9

We determine coefficient X from the normalization condition:
1

jﬁ(z)dézl. (10)
0

For the path of displacement [ we take the dependence used in the case of constant field
[6, p. 180]:

I=1Io/ (1 +%(Nip)3?).
We shall compute the Stewart number occurring in the expression for 7 from the effective
value of the total local field. We write
I=Io/ (1 +2x(St| H|%o)*?). (11)

As in [6], Zo = Dloo, Loo = 0.14-0.08(1 — Zy)* — 0.06(1 — Z*“, = 10°, zy is the dimen-
sionless distance to the channel wall.

Van Dreist factor is [6]
D=1—exp (—2w)rwlp/vA),

where 1y = ndu/dz at z = §, A = 27.5.

Taking the first equation of system (7) into consideration, we can write
D=1—exp(—Zw Re ¥|5(1) +1/2]/A). (12)

Here v(l) is the value of the function v(z) at the wall of the channel obtained from the
solution of (7).

The problem now reduces to integration of the system of equations (1), (7) with boundary
conditions (2), (3), (9) and normalization condition (10).
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Fig. 2. Velocity distribution over the gap for Re = 3000,

q=0.1, My = 2.5:107%; w and s: 1) 2 and 0.7; 2) 10 and 0.3;
3) 2 and 0.9.

Fig. 3. Velocity distribution over the gap for Re = 3000,
q=0.5, w=0.01, s =0.3; Ag: 1) 0.002; 2) 0; 3) 0.004;

4) 0.021.
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Fig. 4. Dependence of the hydraulic drag coefficient Ay
on parameter ‘y for @ = 0.01, q = 0.1, s = 0.3-0.7; Re: 1)
3-10%; 2) 10%; 3) 2:10“; 4) laminar flow; 5) graph of ip= Ag.

Fig. 5. Dependence of the hydraulic drag coefficient ip

on parameter Ay for w = 0.1, q = 0.5; Re: 1) 3-10%; 2) 10“;

3) 2:10%; continuous curves s = 0.7; dashes s = 0.3; 4) laminar
flow; 5) graph of Ay = Ay

2. Similarity Criteria. Below we shall compute the hydraulic drag coefficient
Am=Twl (pU2/2)  as a function of the dimensionless quantities (similarity criteria) q, @,
s, Re introduced above, and the quantity Ay = 2Hagff/Re. Here Haeff = Bn8Yo/2pv(1+ Rm?)
is the Hartmannnumber computed from the effective value of the total field induction in the
channel: Rm=upo(us—Uc)t/n 1is magnetic Reynolds number computed from the size of the pole
division 1. It is obvious that St = As’Re(l+4 (w/g?)?) . Let us make some clarifications here.
When the parameter q = a8, which characterizes the geometry of the channel, is small, the
change in the external magnetic field over the height of the gap is negligible. Parameter®
is essentially the magnetic Reynolds number computed over the half-height of the gap § and
the relative velocity ug — Ue. Furthermore, % = 2(8/h)*,whereh = v2/uows is the depth of
penetration of the plane electromagnetic wave into the half-space. Therefore, for small
values of W the field and currents induced in the electrically conducting fluid are homogen-
eous over the gap. Parameter Ay equals the hydraulic drag coefficient of laminar flow in a
constant magnetic field at large Hartmann numbers with induction equal to the effective value
of the total induction field of the investigated flow. It is a convenient parameter to use,
since firstly, for small q and @ it may be expected [1l] that the hydraulic drag coefficient
will be independent of the slip, and secondly, for small q and W, Ay - AH [1] for all Re.

3. Algorithm and Results of Computation. We give a brief description of the algorithm
for the solution. Lt consists of two subprograms. The first enables us to determine the
average electromagnetic force over the cross section from the solution of induction equation
(1) with boundary conditions (2), (3) and specified velocity distribution TW(z). The equation
was solved by the standard difference method using trial run algorithm.
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The second subprogram enables us to solve the system of equations (7) with boundary
conditions (9) and normalization condition (10) for a given distribution of the electromag-
netic force.

A nonuniform grid 0 = z, < EN+x = 1 was constructed for solving system (7); the grid
became denser near the_channel wall, the degree of densening was controlled by the value of
the gradient dU/dz at z = 1. An auxiliary variable

t=1In (1+0.5 Re V1w (1—2))

was introduced for this purpose; here Tw=Tw/pU? is some approximate value of the non-
dimensicnal frictional stress at the wall of the channel.

A uniform grid with step At = 0.02 1n(1l + 0.5 Re JTw) was constructed in the segment
Al=002In(1--0.5 Re yTw). The nonuniform grid in the segment 2Z=(0,1) 1is obtained from the
formula [9]

éL':l_” 2__—(eti—"l),

Re Ytw

On each segment [Zi, Ei+1]0f the wall, system (7) was replaced by an approximate system with
constant coefficients
di AZ do
ija—— T e =0 e — C—i) | f; 2.
&it1/2 dz +0+ 9 0 dz St ( lt) Ifl +|/2l 0 (7&)

Here
eir1/2= (Bt 8i41) /2, |Hipipe|?= (| H:i|?+ |Hina]?) /2.
The general solution on segment lEi, Ei+1l is

- - A
—i Z =Ai piz Bi ~PiZ e C,
4i(2) =Aiere+ Biepe4 QI

- - A
U:(2) = —&iq12Pi (AeP?— Bie—riz) ——2—2 ;

pi= | Airy2] YSterrya;

Aj, By are arbitrary constants._ From the_condition of continuity of the functions u(z), v(z)
at the grid nodes zj, uj(zi) = uj41(z1), vi(zi) = vi4+:(z4), i = 2,, ...,N and from the bound-
ary conditions vy (0) = uy(1l) = 0 we obtain a system of two-point equations for determining Aj,
Bj. The integral in (10) was_replaced by the sum of integrals over the segments [zj, zj+i).
Within each segment function u(z) was replaced by ui(z), for which the integral was computed
analytically. The system of equations for Aj, Bj, and A thus obtained was solved by the
method of orthogonal trial run [10, p. 112]. The common solution of system (1) and (7) was
obtained by the method of successive approximations.

Examples of the velocity distributions over the gap, computed from the solution of the
system of equations (1), (7), are shown in Figs. 2 and 3. As in the case of laminar flow, the
formation of M-shaped velocity profiles is observed. This effect gets enhanced with the in-
crease of the slip and the parameters w and q (Fig. 2)., An example of the change of the
velocity profile with the increase of parameter Ay from zero onward is shown in Fig. 3. At
first there is a partial suppression of the velocity oscillations by the magnetic field. The
fluid is accelerated in the central region of the channel and decelerated near the wall.
Later velocity profile gets flattened again due to the Hartmann effect. A further increase in
Ay results in the formation of the M-shaped velocity profile.

The dependence of the hydraulic drag coefficient Ay on parameter Ay, computed for dif-
ferent values of Re, w, q, and slip, is shown in Figs. 4-6. For small values of @ and q
(Fig. 4) this dependence is practically the same as in the case of constant field [6]. On
applying the field the drag coefficient first decreases, attains a minimum, and then increases
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Fig. 6. Dependence of the hydraulic drag coefficient Ay on
parameter Ag forw=2, q=0.1;1) Re = 3.10%; 2) Re=10"; 3) laminar
flow; &4) graph of Ay = Ay; continuous curves s = 0.7; dashes

s = 0.3.

Fig. 7. Dependence of hydraulic drag coefficient Ay on slip
for Re = 5000, Agz=5-10"%; w and q: 1) 2 and 0.1; 2) 0.0l and
0.5; 3) 0.01 and O.1.

again.l The curves Ay = Ay(Ag), constructed for the same values of Re but different values
of the slip (s = 0.3-0.7), merge into a single curve.

At large values of Xy all the curves have a common asymptote close to thestraight line
Am = MH-

At large w and q the curvés Ap = An(Ag), constructed for different s, coincide only
on the initial segment (Figs. 5 and 6). The curves corresponding to larger values of the
slip separate out from the common segment of the graph first. The graphs Ap = Ap(ip) for
laminar flow in traveling field (Figs. 5 and 6) behave in the same way in relatiom to s.
For the computation for the laminar mode we put I = 0 in formula (8). The curves Ap = Ay(Ag)
for the turbulent flow, constructed for different values of Re, asymptotically approach the
curves for the laminar flow for the same values of s, w, and q as AH is increased. The
hydraulic drag coefficient is always larger than Mg and increases with s.

The dependence on the slip is shown in Fig. 7. At small values of w, q the coefficient
of friction is practically independent of the slip, which agrees with Harris' results [1].
When w and q are not small, the hydraulic drag coefficient increases with s; even in this
case there is an appreciable range of slips s =0.5, where Ap remains practically unchanged.

4. Principal Results. The velocity profiles and the dependence of the hydraulic drag
coefficient on the dimensionless parameters are computed for a turbulent flow in a traveling
field; included among the dimensionless parameters is parameter Ay, which depends on the
magnetic field induction and is equal to the drag coefficient of laminar flow in a constant
field with induction equal to the effective value of the induction of the total magnetic
field in the investigated flow.

When parameter Ay is used as the argument, the hydraulic drag coefficient remains
practically independent of the slip in an appreciable range of s, which is in agreement with
the results of Harris [1].
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