HYDRODYNAMIC INSTABILITY OF A UNIFORM VELOCITY DISTRIBUTION IN
A CYLINDRICAL PUMP

S. Yu. Reutskii UDC 621.313.53:537.84

Using the method of small perturbations, stability is investigated for a uniform flow of
a viscous, incompressible electrically conducting liquid in a straight infinitely long coax-
ial channel having a radius R exposed to the action of a magnetic field moving along the x
axis. Within the framework of a one-dimensional "narrow strip' model, this problem has been
previously considered in (1, 2]. In the present work, the possibility of a two-dimensional
motion of the liquid is considered.

The same assumptions are made relative to the geometrical channel dimensions and the
character of the unperturbed flow as in [1, 2], i.e., 8/R « 1, &/t « 1 (§ being the channel
height and © = n/a the polar pitch). Assuming the validity of the small gap approximation,
we can write the induction equation for the sole field component in dimensionless form:

Ob [0t + udb[dx +vdb/dy=Rm=' Ab— udBo/dx —0B,/ot , (1)

where x is the coordinate in the direction of the uniform liquid motion, y=Re¢, ¢ 1is the polar
angle, R is the mean channel radius, and u and v are the velocity components along the x and
y axes, respectively,

Equation (1) coincides with Eq. (1) in [2] with the exception of the additional term in
the convective term. The following time, length and velocity values have been used in the
nondimensionalizing: T = 1/w, L = 1/a, and U = w/a; then Rm = ougw/a?. The amplitude of the
moving wave of the external field B, is taken as the characteristic value of the magnetic
field induction. The phase relationships are selected in such manner, as to make the dimen-
sionless function By(x, t) in (1) to equal B,(x, t) = cos 8, with 6 = t — x. Equation (1)
then assumes the form:

06/0t+ udb/0x+ vdb{dy=Rm~' Ab+ (1 —u)sin8. (2)

We write the equations of motion in the form
Ou/0t + udu|0x + vou/dy = —~ Opjox+ Re~' Au—Cxu| V| — Al ((Bo+b)0b/dx), (3)
v/t + udv/0x+ vdv[0y = ~0p/dy+Re~' Av—C,uv| V| — Al ((By+b)db/dy), (4)

where p is the pressure, Re the Reynolds number, Al is the Alfven number, |V|=Yu?+1v?  and
Cx and Cy are coefficients in the Chezy's frictional law. The velocity components are related
by the continuity equation 3u/dx + 3v/3y = 0.

Equations (2) to (4) admit a solution u = u, = const, v = 0, b = bo(x, t) = Rmg(1 +
Rmg?)~! (sin 6 — Rmg cos 6), and Rmg = Rm(1l — u,). Substituting these equations into (3),
the following expression is obtained for the pressure gradient:

Opo/0%x= 0.5 Al Rms (14 Rmy?) ! — C|uo| 4o + Rm, (1 +Rm,?)~2(Rm; sin 26+ (1 — Rm,?)cos 26/2). (5)
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From here on we shall characterize (analogously to [1]) the pressure gradient by the
constant portion of Eq. (5).

We next consider the perturbed motion in the form u = u, + u', v=v'. After substituting
tyese expressions into Eqs. (2)-(4) and applying the standard linearization method, we obtain
linear differential equations for perturbations u', v', b', and p'. We introduce vorticity

w' and the stream function y' according to formulas w' = du'/3y — 3av'/8x, u' = 3yY'/a3y and
v!' = =3¢'/ox, Eliminating the pressure perturbation p', we obtain
0b’/0t +usdb’/0x=Rm=" Ab’— (1+Rms2)~' (sin @ — Rm, cos 8) dy’/dy, (6)
00'/0t + 1e0w’[0x = Re~! Ao’ — 2C | uo| 0’ + Al 5in 89b"/dy, Ay’ =w’. (7), (8)

We consider perturbations that are periodical in the y-coordinate:

~

o' =o(x, t)emy, b'=b(x, t)emw, ' =qy(x,t)eimv, (9)

?here m=1, 2,..., y=t/a, a=aR is the channel semiwidth. By substituting these expressions
into (6)-(8), and at the same time changing from variables as functions of (x, t) to those
of (6, t), we obtain:

Jo/0t= — 500/00+ Re~! (0%0/087— (my)?w) —2C | uo|@ +imy Al sin 85, s=1—us, (10)
06/0t = — s05/00 -+ Rm~' (626/06% — (my)?5) — imy (1+Rm,?)~! (sin 6 — Rm, cos 6) p, (11)
02p/06% — (my)p=o. (12)

We consider approximate solutions in the form
N

(8, 1) =ao(t) + Y, (@1 (1) cos k0 + ana (£) sin £6), (13)
k=1

5(0,1)=bo(t)+ Z(bm(t) cos kO + by (1) sin k0), (14)
Rl

~ h’

W00 =90 () + Dy (bm (1) cos 0+ gua (1) sin £9). (15)
Rl

If in these equations we limit ourselves to the first terms, we obtain perturbations within the
framework of the narrow strip model. By substitution of Eqs. (13)-(15) into (10)-(12) and by
comparison of corresponding terms in sin k6 and cos k8, we obtain a system of ordinary linear
differential equations with constant corfficients. The question of the stability of motion is
is thus transposed into a question concerning the existence of eigenvalues containing a real
part in the coefficient matrix. For each specific selection of the Re, Rm, Al, my, u,, and

C the eigenvalues were found using the ATEIG subroutine included in the software of the EC
computer. The complex matrix approximating Eqs. (10)-(12) was found to be a real matrix of
doubled dimension. To solve for the motion arising after the loss of stability, an eigenvec-
tor was evaluated which corresponds to the eigenvalue A, having the maximum real part. For
purely real A, the reverse iteration algorithm [3, p. 166] was used, while for complex A, its
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modification {4, p. 275] was employed. The computations were carried out mainly for N = 3
and N = 5. Increasing N to 7 and 10 did not effect the results, some of which are presented
in Figs. 1-3.

In Figs. 1 and 3 velocity u, is plotted along the abscissa and the pressure gradient
3p/dx along the ordinate. Only the constant term of the right hand portion in (5) has been
taken into account. Shown in these figures are neutral curves Real(};) = 0 dividing the re-
gions of stable and unstable uniform flow.

We next compare the results of the present work with the well-known model of Gailitis
and Lielausis [1]. We limit ourselves to the consideration of the pumping regime 0 < ug, < 1.
In this case the conclusions reached in [1] come down basically to the following: 1) an in-
stability regime is possible only at Rm satisfying the condition Rm=}1+ (my)?, 2) in the
(ug, 3p/3x) plane the neutral curve originates at the origin of coordinates and has a vertical
asymptote whose position is determined by the equation (see (33) in [1]) sRm = yI= (1my)?,
s =1 — uy; 3) the most destabilizing perturbations are those with m = 1.

Figure 1 shows neutral curves in the (uy, 3p/3/x) plane for Rm = 1 (1 and 2) and Rm = 3
(3 and 4). In this figure, plotted as a dash—dot line, is the straight line u, = 1 —
Y1+ (my)})Rm  for Rm = 3 and my = 0.3. Curve 3 is drawn for parameters Rm = 3, my = 0.3
Re = 1000 and C = 0.04 based upon the results of the present work. It is evident that good
agreement exists with the results of [1]. The eigenvalues corresponding to the most destabil-
izing perturbations in the vicinity of the neutral curve are purely real. It follows there-
fore that the transition proceeds to a new stationary state, as proposed in the theory of [1].
Curve 4 corresponds to the same values of parameters Rm and my; however, here Re = 10,000
and C = 0.004. The instability region is substantially larger, part of it situated to the
right of the dash—dot straight line uy=1-y1+ (my)2/Rm. To the right of it, eigenvalues,
whose real part revert to zero on the neutral curve, have a nonzero imaginary part. Conse-
quently, after the loss of stability in a uniform flow an oscillating motion is produced.
Curves 1 and 2 are drawn for Rm = 1, Re = 10,000, C = 0.004 and my = 0.1 (1) and my = 0.3
(2). In this case, a larger my value corresponds to a larger instability region. It follows
then that stability can be lost withm > 1.

Figure 2 shows the dependence of the average velocity u, at which stability is lost on
my for A1 = 4, Re = 1000 and C = 0.04. Curves 1-3 correspond to Rm = 5, 1, and 0.5. For
Rm =1 and Rm = 0.5 this dependence displays a nonmonotonous character. In Fig. 3 the bound-
ries of the instability region are drawn for Rm = 5, Re = 10,000 and C = 0.004. Curves 1-5
correspond to the parameter my having the values 0.1, 0.2, 0.3, 0.4, and 0.5. Dashed lines
show vertical asymptotes from theory [1] for Rm = 5, my = 0.1 (6) and my = 0.5 (7). The curve
1 (my = 0.1) approaches its vertical asymptote 6 beyond the boundaries of the graph; at about
dp/dx = 0.35 it turns to the right and crosses the asymptote. The vertical asymptotes drawn
in accordance with [1] divide each neutral curve into two parts. In one of these, correspond-
ing to a large slip, a transition takes place to a new stationary regime while in the other,
situated in the (uy, 3p/3x) plane to the right of the asymptote, loss of stability in uniform
flows produces an oscillating motion.
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