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SURFACE INSTABILITY OF THE PLANE LAYER
OF CONDUCTING LIQUID

I. Kolesnichenko, S. Khripchenko
Institute of Continuous Media Mechanics, Perm, Russia

In this paper, the behavior of the plane layer of conducting liquid with a free surface
is studied. The layer is assumed to be subjected to volumetric electromagnetic forces
caused by the interaction between the electrical current, flowing through the layer, and
the magnetic field. The vector of these forces lies in the layer plane. Because of the applied
forces, the layer surface can be fixed at equilibrium position. It is found that under certain
parameters this position can be unstable against disturbances. The probability of the
vortex flow in the layer could decrease the stability threshold of the equilibrium position
of the layer surface against disturbances.

1. Introduction. Processes taking place in a liquid metal layer with a free
surface, the thickness of which is less than its length and width, are broadly stud-
ied. Under electromagnetic forces generated in the layer, the free surface can be
fixed at equilibrium position. It can hold at this position regardless of whether
the vortex flow is absent or present. In the first case, electromagnetic forces are
only potential and, in the second, they involve a vortex component. Under cer-
tain parameters, the equilibrium position of the surface is unstable against small
disturbances. Hence, a regime of surface non-decaying oscillations can be reached.
This phenomenon has been observed in some technological processes developed
for operating with liquid metal layers with a free surface such as aluminum elec-
trolysis, stirring of flows generated in flat metal layers, and melting of flat metal
layers. In these processes, the electrical current, passing through the liquid metal
along or across the layer, is used. Non-decaying and, especially, increasing surface
oscillations are undesirable but probable in the mentioned processes.

Electromagnetic forces generated in a layer due to the interaction between the
electrical current and its own magnetic field (or an external field, if present) can
be potential originally. As a rule, this implies the availability of the equilibrium
position, at which the liquid flow is absent, and the free surface gets some shape
defined by the balance between electromagnetic and gravity forces. The distur-
bance of the equilibrium surface position perturbs the electrical current field. The
instability phenomenon is possible when the vector of electromagnetic forces has
a vertical component (the buoying forces) [1], and when the vector of electromag-
netic forces lies in the layer plane [2, 3]. The disturbance of the electrical current
caused by the layer thickness nonuniformity along the current vector direction
produces the vortex component of electromagnetic forces. This is the condition
for generating the electrovortex flow (EVF) [4].

Another condition for EVF generation is the nonuniformity of own magnetic
field (or the external field) along the current direction [4]. The electromagnetic
forces are assumed to have the vortex component originally. One way of generating
these vortex forces suggests that the layer should placed into a gap between the
ferromagnetic slabs. The value of the gap between the slabs must vary along the
electrical current streamlines. This can be achieved by inclining one of the slabs
in the current direction [4]. If the slab is inclined across the current direction,
the volume electromagnetic forces are potential [5] and they fail to generate as
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sentation of the examined
plane layer.

initially vortex flow. However, such flow can appear owing to the isothermal MHD-
instability [5, 6]. The value of the gap can be changed from a certain value up
to infinity by restricting the slab size in the plane. If the electrical current passes
normally to the layer, or an alternating magnetic field is generated perpendicular
to the layer in some restricted areas of layer plane, then another way of EVF
generation is possible. However, the contour of such areas has to be different from
the circle. In these cases, the EVF with four, eight or more eddies is generated
[7, 8, 9], and the surface may become unstable. The free surface oscillations were
observed experimentally for some set of parameters in the case of EVF with four
eddies [9]. Two effects initiated the surface instability: the nonlinear interaction
between EVF and surface oscillations, and the change in electrical current density
produced by the surface oscillations [8]. The second effect can be described for a
two-layer liquid as follows. The oscillations of the interface between layers change
the effective electrical conductivity of this two-layer system and vary the electrical
current density and electromagnetic forces.

When the electrical current passes along the plane of the layer, the current
density can be changed only due to the surface oscillations with the wave vector
directed along the current density vector j. The layer is placed either in the
external magnetic field, or in the gap between ferromagnetic slabs, or in the gap
of the ferromagnetic C-core. The magnetic field B thus generated can penetrate
the whole layer plane or only its part (Fig. 1). In the latter case, one can observe
the EVF generation, which decreases the stability threshold of the equilibrium
position of the layer surface against disturbances.

2. Equations of motion of the liquid. The plane liquid layer with a free
surface differs from the layer with a solid cover by hydrostatic pressure. The pres-
sure gradient is expressed in terms of the layer height h(x, y, t) as ∇P = ρg∇h. It
means that at generating of, for example, a vortex flow in this layer, an excessive
pressure provokes the growth of the layer height, whereas the reduced pressure –
decrease. This phenomenon can be observed in the center of the rotating layer of
the liquid in the form of a funnel. The electromagnetic forces in the layer plane
F(x, y, t) = (Fx, Fy, 0) generate the flow of a conducting fluid with a velocity
W(x, y, z, t) = (Wx, Wy, Wz). The flow is described by the equation of magne-
tohydrodynamics, the equation of discontinuity and the boundary conditions for
velocity and surface height:

∂tW + (W∇)W = −G∇h + �W + SβγFem, (1)
divW = 0, (2)

W(±a,±b, z, t) = 0, W(x, y, 0, t) = 0, Wz(x, y, h, t) =
dh

dt
, (3)

∂h

∂x
(±a, y, t) =

Sβγ

G
F em

x (±a, y, t),
∂h

∂y
(x,±b, t) =

Sβγ

G
F em

y (x,±b, t). (4)
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The main linear dimensions assumed are (Fig. 1) the layer half-length a, half-width
b, horizontal thickness d, the length am = |x2−x1| and the width bm = |y2−y1| of
ferromagnetic slabs, the parameter δ, related to the magnetic field, and the value
of overlap of the layer plane by the ferromagnetic slab ξ = ambm/4ab. For the
layer placed in the gap between the ferromagnetic poles, δ is the gap value. In (1),
we use the noninductive approximation, which holds valid for Rm � δ/2b [10].
Dimensionless parameters are written as

G =
gd3

ν2
, S =

I2
0µ0

4ρν2
, β =

d

b
, γ =

d

δ
.

Since we consider the plane liquid layers (when β ∼ 0.1), the shallow water
approximation is used that holds valid for small gradients of changes in surface
height (∂xh, ∂yh ∼ 0.1) [5, 11, 12]. In this case, the system of equations and
boundary conditions (1)–(3) take the two-dimensional form:

∂Vx

∂t
+

∂(VxVxq)
∂x

+
∂(VxVyq)

∂y
+ Vxr

dh

dt
= −Gh

dh

dx
+ �Vx + κVx + SβγhFx, (5)

∂Vy

∂t
+

∂(VxVyq)
∂x

+
∂(VyVyq)

∂y
+ Vyr

dh

dt
= −Gh

dh

dy
+ �Vy + κVy + SβγhFy , (6)

∂h

∂t
+ (V∇)h = −∇ · V, (7)

V(±a,±b, t) = 0. (8)

Boundary condition (4) for the layer height remains unchanged. To derive system
of equations (5)–(8), the vector of three-dimensional velocity field was represented
as the product Wx = Vxf , Wy = Vyf of the two-dimensional vector with compo-
nents, which are a local flow-rate V(x, y, t) = (Vx, Vy), and a normalized profile
function:

f(z, α, h) =
−4α(sh(αz) − sh(2αh) + sh(−αz + 2αh))sh(αh)ch(αh)
sh(2αh) (4αhsh(αh)ch(αh) + e−2αh (2e2αh − e4αh − 1))

, (9)

α = HaB, Ha =
I0µ0γ

2

√
σ

η
,

h∫
0

f(z, α, h)dz = 1.

Then, we performed integration over the layer from 0 to h. This gives the following
three functions in equations (5) and (6):

q(α, h) =

h∫
0

f2(z, α, h)dz =

= α(−16αhe4αh + 32αhe4αhch4(αh) − 16αhe4αhch2(αh) − 6e2αh + (10)
+6e6αh − 3e8αh + 3)/2(4αhsh(αh)ch(αh)e2αh + 2e2αh − e4αh − 1)2,

r(α, h) = f(z = h, α, h), (11)

κ(α, h) =

h∫
0

∂2f(z, α, h)
∂z2

dz =
4α2

(−2e2αh + 1 + e4αh
)

4hαsh(αh)ch(αh)e2αh + 2e2αh − e4αh − 1
, (12)

the latter of which defines friction at the bottom. However, this function can be
used when ξ = 1. In the case of ξ < 1, the vortex flow appears in the layer and
the friction function κ is assumed equal to (κ1 + κ2|V|)/2, as in [3, 11, 12].
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3. Electromagnetic forces. In the previous section, we have already said
that the vector of electromagnetic forces lies in the layer plane. The electrical
current I0 passes between the vertical walls, x = −a and x = a (Fig. 1). The
current density unit (defined for the horizontal position of the surface) is equal
to j0 = I0/(2db). For a non-horizontal surface of the layer, the current density
j = (jx, 0, 0) is defined in terms of the cross-sectional area (in a dimensionless
form)

Πi(x, t) =
β

2

b∫
−b

h(x, y′, t)dy′, jx(x, t) = 1/Πi(x, t). (13)

In this study, we consider the external magnetic field Be and the magnetic field
of electrical current Bi, which is amplified in the gap between the ferromagnetic
slabs. The vertical field component with the dimension value B0 = I0µ0/2δ is
much larger than the horizontal one. Therefore, we assume that B = (0, 0, Bz) [5].
The slabs may cover the area with the liquid metal in the plane only partly (ξ < 1).
Let us write Ωm = (x, y : x ∈ [x1, x2], y ∈ [y1, y2]) for the overlap area, which may
coincide with the layer area (ξ = 1). The magnetic field of the electrical current
between the slabs will be determined using the Ampere law. Thus, we have

B∗
z (x, y, t) = jx(x, t)Πm(x, y, t) = jx(x, t)β

0m∫
y

h(x, y′, t)dy′, (x, y) ∈ Ωm.
(14)

The function of zero magnetic field 0m(x, t) is the coordinate value
y ∈ [y1, y2] where Bi

z(x, 0m, t) = 0, is defined by minimizing the functional
|Πm(x, y1, t)− Πm(x, y2, t)| → 0. For ferromagnetic cores (ferromagnetic slabs
fitted with a one-sided jumper), 0m is placed at the edge of the layer plane in
the jumper area. For ferromagnetic slabs in the case when the layer surface is
horisontal, 0m(x, t) lies in the midpoint of the slabs. One can observe the field
leakage at the core edges, which can be described by the scattering function as

Bi
z(x, y, t) = B∗

z (x, y, t)fd(x, y, t). (15)

Parameters for this function, defined on assumption that the magnetic currents
in the regions between the slabs (Sin) and those outside (Sout) are equal, can be
obtained by minimizing the functional∣∣∣∣∣∣

∫
Sout

Bi
z(x, y, t)dxdy −

∫
Sin

Bi
z(x, y, t)dxdy

∣∣∣∣∣∣ → 0. (16)

Be
1 2 3 4

5 6 7 8

Fig. 2. Location of core gen-
erating electromagnetic forces:
potential forces ωF = 0 (types
1–5) and forces with a vortex
component ωF �= 0 (types 6–8).
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Fig. 3. Profiles for the
equilibrium position of the
layer free surface under
potential electromagnetic
forces (ωF = 0): numbers
1–5 correspond to the no-
tation from Fig. 2 (Sβγ =
1.63 · 106, G = 108, Be =
0.2 Tl for type 1), 0 – the
horizontal position of the
layer.
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Being subjected to the electromagnetic force Fy(x, y, t) = jx(x, t)Bz(x, y, t),
the layer surface can reach the equilibrium position hc(x, y), different from the
horizontal one. We examine two types of the equilibrium state, one of which
involves the value

ωF =

a∫
−a

b∫
−b

|∇ × F|dxdy (17)

equal to zero, and the other – different from zero. Schemes of variants capable
of providing ωF = 0 and ωF �= 0 are represented in Fig. 2, where bold arrows
denote electromagnetic forces, and the dashed line indicates the flows of the liquid.
Fig. 3 presents the cross-sections of the surface in equilibrium position hc(0, y) for
ωF = 0. Fig. 4 shows the surface at equilibrium position and the velocity field for
ωF �= 0. The equilibrium position of the surface is reached by the balance between
hydrostatic, electromagnetic and centrifugal forces.

4. Stability of the layer free surface. Conclusions. We have studi-
ed the stability hc(x, y) in the analysis of the mathematical model formalized in
equations (4)-(8) and (13)-(16) by numerical calculations. Deviations of the free
surface from equilibrium position ζ = h(x, y, t) − hc(x, y) at the origin of the
process time are represented as a long small-amplitude wave. One of the observed

6 7 8

Fig. 4. Free surfaces and velocity fields for the equilibrium position under electromag-
netic forces with a vortex components ωF �= 0: numbers 6–8 correspond to the notation
from Fig. 2 (Sβγ = 2.61 · 105, G = 108).
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Fig. 5. Evolution of the func-
tions E in a non-decaying os-
cillation process (1) for type 3
in Fig. 2 (Sβγ = 6.52 · 106,
G = 108) and in the process
of gravity waves decaying (2).

parameters is the integral value |ζ| for the whole layer:

E(t) =

b∫
−b

a∫
−a

|ζ(x, y, t)|dxdy. (18)

For the cases with ωF = 0, the instability mechanism can be explained as follows.
The probability of the long-wave disturbances of the surface with the wave vector
directed along the current density vector changes the value of current density along
this direction. It disturbs the balance between electromagnetic and gravity forces
at equilibrium state and can stop disturbance decaying under certain parameters
of the process. In the case of acting by an uniform external magnetic field (type 1
in Fig. 2) two mechanisms of influence on the disturbances can be implementied.
In an unstable process the disturbances grow under electromagnetic forces near
one edge, where hc is minimal and are suppressed near the opposite edge, where
hc is maximal. Location type 2 of cores (Fig. 2) with a nonuniform magnetic
field (and forces) is characterized by a lower stability if compared to type 1 (when
Be = B0), which is attributed to the absence of an additional mechanism of
oscillation suppression. Of the proposed types, type 3 is the most unstable because
of the presence of the mechanism of disturbance growth on the both sides of the
layer. The function E for an unstable processes does not decay (Fig. 5). As to
types 4 and 5, we can say that these are stable against disturbances, which are
attributed to the presence of the mechanism of disturbances suppression on the
one or both sides of the layer and the absence of a mechanism of disturbance

Fig. 6. Snapshots of the free surfaces and the velocity fields in an unstable process for
type 8 in Fig. 2 (Sβγ = 1.63 · 106, G = 108).
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Fig. 7. Neutral curves for
the processes with ωF = 0:
1a – for type 1 (Fig. 2)
with Be = 0.015 Tl, 1b –
for type 1 with Be = 0.2
Tl, 2 and 3 – for types 2
and 3 .
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growth. Fig. 7 presents neutral curves for all described cases except types 4 and
5. For type 1 an increase in value of the external magnetic field Be decreases the
stability threshold.

For the cases with ωF �= 0, there is an additional, just discussed, instability
mechanism, related to a nonlinear interaction between the vortex motion and the
oscillation process. The process with a more intensive four-eddies liquid flow (type
8, Fig. 2) is less stable than one- and two-eddies flows (types 6,7) due to a higher
degree of the nonlinear interaction. When the process is stable, the velocity field
with four eddies, for example, and equilibrium position of the surface are stationary
for a long time. If the process is unstable, the eddies placed in diagonal change their
intensity periodically. After that one large eddy is shaped and long wave surface
oscillations appear (Fig. 6), as it was noticed in experiment [9]. Fig. 8 gives neutral
curves for types 6–8 of electromagnetic forces generation. The increase in slabs
size (increase in ξ) improves the stability of the system due to a decrease in the
scale of the vortex motion. In the limiting case, when the slabs cover the layer
plane completely (ξ = 1), the initial vortex flow is absolutely suppressed.

The obtained results allow to conclude that the free surface of the plane layer
of a conducting liquid subjected to electromagnetic forces could be unstable against
disturbances. This fact should be taken into account in designing technological
MHD-devices.

Fig. 8. Neutral curves for
the processes with ωF �= 0.
Numbers correspond to
the notation from Fig. 2
(G = 108).
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