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MERGING OF ENSAMBLES OF ROTLETS
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We present a two-dimensional numerical simulation to study the behavior of two ensembles of
rotlets. Initially, we examined a scenario in which the model was based solely on hydrodynamic
interactions between particles. This preliminary analysis revealed that an ensemble of rotlets
revolves around each other, similar to two rotlets rotating around a stable center of mass,
and traces circular trajectories. This behavior was then compared with theoretical predictions.
Subsequently, the repulsive forces were incorporated into the model. In this new system, two
ensembles initially rotated around each other. Over time, they merge, which results in a single-
ordered rotating structure. The eventual configuration obtained depends on the initial distance
separating the ensembles, either a stable hexagonal ordered structure or a disordered structure,
which is characterized by the hexatic order parameter.

Introduction. The mechanism of ordered structure formation via self-assembly
has been extensively studied in different research fields [1]. In particular, magnetic soft
matter has received great attention of researchers due to the observed ordered pattern in
an ensemble of magnetized particles exposed to the external magnetic field. Ensembles
of rotating magnetic droplets [2], the dynamics of self-assembly of magnetized disks [3, 4]
have been studied experimentally and theoretically to understand the underlying mech-
anism for the ordered structure formation, dynamic and programmable self-assembly of
micro-rafts [5], and rotating crystals of magnetic Janus colloidal particles [6] are some
examples of self-assembly of spinners. In [2], an ensemble of magnetic droplets (micron
size in diameter) was studied experimentally, where magnetic droplets formed a rotat-
ing structure with hexagonal order under an external rotating magnetic field. Because
in [2](Fig. 2) experiments on several interacting ensembles of spinners were carried out, it
would be interesting to study their evolution when hydrodynamic interactions and steric
repulsion between particles are considered.

In this work, we study the behavior of two ensembles of rotlets and their merging in
two parts: first, when only hydrodynamic interactions between particles are considered,
and second, when along with hydrodynamic interactions, the steric repulsion between
particles is also considered. In the first case, the ensembles follow circular trajectories;
however, in the second case, the ensembles merge. After merging, the ensembles tend
to form a single-ordered structure. Our findings have revealed that as the separation
between the ensembles increases, the time needed for merging also increases, and, after
merging, the system needs a considerable amount of time to reach a stable state. However,
the initial separation between ensembles may not lead to the formation of an ordered
structure. When the initial separation was minimal, the final structure exhibited a
hexagonal arrangement.

1. Model.

We considered a two-dimensional (2D) ensemble of rotating particles. Each particle

in the ensemble rotating with an angular velocity ~ω = (0, 0, ω) applies a torque ~M at its
mass center, producing a flow around it. The velocity field generated by an individual
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particle can be described as follows,

~v(~r) =
[M~ez × ~r]

8πη|~r|3
, (1)

where ~r is the radius vector from the center of the spherical particle, η is the viscosity of
the fluid. The particles in the ensemble interact owing to the flow field created by each
particle; therefore, the motion of the ith particle in the velocity field is calculated as the
sum of the velocity fields produced by all other particles at the center of mass of the ith

particle. Thus, the equation of motion describing the dynamics of the ith particle is

d~ri
dt

=
∑

i6=j

M [~ez × (~ri − ~rj)]

8πη|~ri − ~rj |
3

. (2)

Equation (2) may be written in Hamiltonian form by introducing (xi, pi) = (xi, yi),

ẋi =
∂H

∂pi
, (3)

ṗi =−
∂H

∂xi
, (4)

H =
1

2

∑

i6=j

1

|~ri − ~rj |
. (5)

As H is an integral of motion, the rotlets cannot approach each other too closely.
The second integral of motion

∑
i(x

2
i +y

2
i ) resulting from the rotational invariance of the

Hamiltonian implies that the rotlets are confined to a limited region of the plane. We
then included the steric repulsion between the particles in the ensemble. The velocity
induced by repulsive interactions reads as

~vrep(~ri − ~rj) =
∑

i6=j

L0

(~ri − ~rj)

|~ri − ~rj |
e−

|~ri−~rj |

rs , (6)

where L0 is the magnitude of the velocity induced by repulsion, and rs is the range of
repulsion and has dimensions of length. Adding the velocities Eq. (2) and Eq. (6), the
equation of motion describing the dynamic of an ensemble consisting of N particles is
written as

d~ri
dt

=
∑

i6=j

M [~ez × (~ri − ~rj)]

8πη|~ri − ~rj |
3

+
∑

i6=j

L0

(~ri − ~rj)

|~ri − ~rj |
e−

|~ri−~rj |

rs . (7)

The distance is scaled by a (the mean distance between particles) and the velocity
by vh = M/(8πηa2). When introducing dimensionless parameters ~ri = ~ri/a, τ = tvh/a,
λ = L0/vh, rs = rs/a (tilde is further omitted), where λ characterizes the ratio of
velocity induced by repulsion and the characteristic velocity induced by hydrodynamic
interactions, the equations of motion without repulsion and with repulsion written in the
dimensionless form are, respectively,

d~ri
dτ

=
∑

i6=j

~ez × (~ri − ~rj)

|~ri − ~rj |
3

, (8)
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Fig. 1. The evolution of ensembles. (a) The ensemble remains disordered when only the
hydrodynamic interaction is present, Eq. (8), shown for the time τ =2. (b) The ensemble reached
an ordered state at the time τ =2 when repulsion was included along with the hydrodynamic
interaction Eq. (9). The ensemble consisted of N =100 rotlets with the parameters λ=0.2 and
rs =0.05. The x and y are the coordinates of the particle positions.

d~ri
dτ

=
∑

i6=j

~ez × (~ri − ~rj)

|~ri − ~rj |
3

+
∑

i6=j

λ
(~ri − ~rj)

|~ri − ~rj |
e−

|~ri−~rj |

rs , (9)

where rs and λ are the dimensionless parameters. Rotating particles in an ensemble ex-
hibit a chaotic motion due to the hydrodynamic interactions, Eq. (8) and Fig. 1a. Adding
repulsion causes the particles to reach an ordered state, where the hydrodynamic inter-
actions are balanced, and the system evolves to a steady state, Eq. (9) and Fig. 1b.

2. Numerical simulation results.

2.1. Dynamics of two rotating ensembles without steric repulsion. In our previous
work [8], we studied in detail the dynamics and evolution of single ensembles consisting
of rotating particles. We observed that two particles in a large ensemble orbit each other
with a fixed center of mass and trace a circular path when only hydrodynamic interac-
tions between the particles were present. This motivated us to observe the dynamics of
two rotating ensembles without and with steric repulsion. Thus, for hydrodynamic inter-
actions only, instead of two rotating particles, we examined two ensembles of particles,
each ensemble consisting of N =10 particles that were initially separated by a distance of
d=4. Over time, the ensembles rotated around each other and followed a circular path.
To determine the trajectory of each ensemble analytically, we assumed that the position
of each ensemble is defined by a radius vector from its center of mass ~R1 for ensemble
one, ~R2 for ensemble two, and ~R = ~R1− ~R2. Therefore, the motion of the radius vectors
~R1 and ~R2 is given approximately by equations in a dimensionless form as

d~R1

dτ
= N

[~ez × (~R1 − ~R2)]

|~R|3
, (10)
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d~R2

dτ
= N

[~ez × (~R2 − ~R1)]

|~R|3
, (11)

where N is the total number of particles in each ensemble (the total number of particles
in both ensembles is denoted as NT). The center of mass for ensembles located at (0,0)
~R1 + ~R2 =0, which implies ~R1 = − ~R2 using this condition, and Eq. (10) and Eq. (11)
read

d~R1

dτ
= 2N

[~ez × ~R1]

|~R|3
, (12)

d~R2

dτ
= 2N

[~ez × ~R2]

|~R|3
, (13)

d~R1

dτ
= 2N

(−ycm1î+ xcm1ĵ)

|~R|3
, (14)

d~R2

dτ
= 2N

(−ycm2î+ xcm2ĵ)

|~R|3
, (15)

where (xcm1, ycm1) and (xcm2, ycm2) are the coordinates of the positions of the center of
mass for ensemble one and ensemble two.The solution to Eq. (14), Eq. (15), respectively, is

~R1 = (xcm10 cos(ωτ)− ycm10 sin(ωτ)) î+ (xcm10 sin(ωτ) + ycm10 cos(ωτ)) ĵ, (16)

~R2 = (xcm20 cos(ωτ)− ycm20 sin(ωτ)) î+ (xcm20 sin(ωτ) + ycm20 cos(ωτ)) ĵ, (17)
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Fig. 2. Numerical simulation and analytical comparison of two ensembles rotating as two rot-
lets and following circular trajectories when only the hydrodynamic interaction between particles
is present. This indicates a complete single rotation from τ =0 to τ =19.6. ~R1 = (xcm1, ycm1)
is the center of mass of ensemble one, and ~R2 = (xcm2, ycm2) is the center of mass of ensemble
two. For the simulation, green stars and blue stars are in anti-phase with each other, and for
the analytical result, black and red particles are in anti-phase. N =10 in each ensemble.
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Fig. 3. Simulation of one complete rotation of two ensembles for the period τ =19.6 with
different time steps that trace circular trajectories. The ensembles rotate at opposite positions
on the diameter of the circular trajectory (in anti-phase): ensemble one (red) and ensemble two
(blue). The x and y are the coordinates of the positions of the particles in each ensemble, and
N =10 in each ensemble.

where ω = 2N/|~R|3 is the angular frequency, (xcm10, ycm10) and (xcm20, ycm20) are the
coordinates of the positions of the center of mass for ensemble one and ensemble two at
the time τ =0, respectively. Fig. 2 illustrates a quantitative good match of the circular
trajectories of the two rotating ensembles obtained by numerical simulation and analyt-
ical result. The trajectories are shown for one complete rotation by simulation (from
τ =0 to τ =19.6), where green stars for ensemble one and blue stars for ensemble two,
both are in anti-phase with each other, and from analytical results for ensembles one,
Eq. (16), and two, Eq. (17), are shown in black and red particles, respectively, and are

also in anti-phase with each other (~R1 = − ~R2). The initial separation between the en-
sembles was d=4. Fig. 3 shows the actual simulated rotation of the ensembles over time
with a period of τ =19.6. Both ensembles are initially situated at opposite positions,
indicated in red and blue, respectively, at τ =0, that is, in anti-phase. As time elapsed,
the ensembles began to rotate around each other, as shown at different time steps. At
each time step, both ensembles rotated at the opposite side of the diameter, and the
corresponding time step was denoted by the same color as the ensembles.

Furthermore, when the two ensembles were spaced apart by a distance of one (d=1)
and again only the hydrodynamic interaction between the particles was considered, it
was observed that these ensembles began rotating along a circular path and eventually
merged. The resulting merged structure remained chaotic, as shown in Fig. 4. The tra-
jectories calculated for both ensembles are presented in Fig. 5a, where it shows some
number of rotation of the ensembles at the beginning. We can also see another con-
centric circular path, which was observed owing to the exchange of particles between

269



B. Shinde, A.Cēbers
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Fig. 4. Merging of ensembles when only the hydrodynamic interaction is present at d=1 and
N =10 in each ensemble.
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Fig. 5. (a) Trajectory of the center of mass of each ensembles. (b) Separation between the
center of mass of two ensembles with time. Only hydrodynamic interactions between particles
are present. The total number of particles in each ensemble is N =10 and the initial separation
between ensemble is d=1.

the ensembles as the separation between them decreased (Fig. 4, τ =15) and later they
get merged that shows chaotic trajectories at the center. The separation between the
ensembles over time is shown in Fig. 5b, merging occurred around τ =25 and the fur-
ther fluctuation in the separation is due to the chaotic motion of particles in the final
ensemble.

2.2. Dynamics of two rotating ensembles with steric repulsion. It is fascinating to
observe the dynamics of two ensembles of particles as they rotate around each other when
repulsion is introduced between the particles. To gain insight into the final evolution of
the two rotating ensembles at a late time τ , we conducted numerical simulations of
Eq. (9) and analyzed their dynamics based on the different initial separation between the
ensembles. Each particle moves through the velocity field generated by the other particles
in the same ensemble as well as those in the second ensemble. A notable observation was
made that the ensembles turned around each other, the distance between them reduced,
and they merged into a single large ensemble over time owing to velocity fluctuations. The
final state of the last single ensemble was determined to be either ordered or disordered
based on the initial distance between the two ensembles and for the fixed parameter values
(λ and rs). At τ =0, the particles were uniformly distributed in a circle of radius 0.2 and
constituted an ensemble. At τ =0, the position of the center of mass of ensemble one
was at ~R1 and the position of the center of mass of ensemble two was at ~R2. The initial
separation between the ensembles was given by ~R1 − ~R2. A similar initial configuration
of the two ensembles was considered in further calculations. We analyzed the system
with different initial separations between the two ensembles for d=1, d=4, and d=6,
while keeping the values of the parameters fixed at λ=0.5 and rs =0.05 for a system
with N =50 particles in each ensemble. We then tracked the evolution of the system at
different time steps τ , showing that the final state of the combined ensemble was either
ordered or disordered.
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Fig. 6. Merging of two ensembles with time τ (red particles – ensemble one and blue particle
– ensemble two), where the initial separation between the ensembles was d=1, the parameters
were λ=0.5 and rs =0.05, the number of particles in each ensemble N =50, and the total
number of particles in the final single ensembles NT =100. The system evolves to a steady
state, where it forms a hexagonally ordered structure, as shown by the Delaunay triangulation
at τ =10000, where black particles have six neighbors, pink particles have five neighbors, and
green particles have seven neighbors. The pink and green particles are the defects in the final
ordered structure.
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Fig. 6 shows the evolution of the two ensembles at d=1. It was observed that at
τ =0.2 the ensembles began to rotate around each other, and both ensembles appeared
to expand to some extent. In addition, each ensemble had a chaotic structure. Because
of the velocity fluctuation, the deformation of the circular shape of each ensemble starts,
and the distance between the ensembles reduces. At a certain point, both ensembles
begin to merge and subsequently form a single chaotic structure (τ =1). At τ =4, we
can observe that the ensemble was quite ordered; however, there is a single particle (blue
color) orbiting around the large ensemble. Eventually, the single particle merge with the
ordered ensemble leads to the formation of a chaotic ensemble. The disordered ensemble
eventually becomes a single rotating ordered structure around τ =10. The structure
continued to expand until the repulsive forces between the particles diminished. At a
time step of τ =10000, the panel indicates that the system has formed a hexagonally
ordered structure plotted with the Delaunay triangulation, where the black, green, and
pink particles have six, seven, and five neighbors, respectively. The green and pink
particles represent defects in the system. The same neighbor counts and colors were
used in further calculations. Both ensembles merged quickly due to their small initial
separation. It is surprising that there was no attractive force between the ensembles,
and yet both ensembles merged. The trajectories for these two ensembles are shown in
Fig. 7a, with the same initial number of rotation of the ensembles that follow a circular
path and get merged once they are close enough to each other. In Fig. 7b, we can observe
a fluctuation in the separation between the ensembles after their merging (from τ =0.5
to τ =8), which was caused by the chaotic ensemble. However, after a time delay of
τ =9, the separation appears to be constant with time, which can be explained by the
ordering in the ensemble. All particles in the ensemble rotated with the same angular
velocity. The distribution of particles (red and blue) from each ensemble was fixed in the
final single-ordered ensemble, as shown in Fig. 6 (τ =1000).
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Fig. 7. (a) Trajectories of the center of mass of two ensembles, and (b) the separation between
the center of mass of two ensembles with time as in Fig. 6, where N =50 in each ensemble, the
parameters λ=0.5, rs =0.05, d=1.
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Fig. 8. The evolution of the hexatic order parameter for the initial separation d=1, where
N =50 in each ensemble, the parameters λ=0.5, rs =0.05.

The evolution of the hexatic order parameter |ψ|2 for this system is shown in Fig. 8
according to the relation (I is the imaginary unit, Nint is the total number of internal
particles, ‘nn’ is a nearest neighbor)

ψ6(i) =
1

Nnn

∑

j∈nn

exp (6Iϑij); ψ =
1

Nint

Nint∑

i=1

ψ6(i), (18)

which shows an increase in the hexagonal order parameter at τ =4 (Fig. 8) due to the
formation of an ordered structure after merging. However, a single particle still rotates
around the large-ordered ensemble, and when it merges with the large ensemble, there
is a drop in the hexatic order parameter because the ensemble becomes chaotic (Fig. 6,
τ =6.5). This indicates that the ensemble was sensitive to external perturbations. How-
ever, during evolution, this ensemble again forms an ordered structure, for which the
hexatic order parameter remains constant, i.e. |ψ|2 ≈ 3.5 (Fig. 8, after τ =25). The
hexatic order parameter for all cases was calculated for a single ensemble formed after
the two ensembles merged.

Fig. 9 illustrates the behavior of the two ensembles when the initial distance between
them increased to d=4 for the same parameter values (λ and rs). As shown, both
ensembles rotated around each other for a certain period, and each ensemble ordered itself
first. The distance between them decreases as time passes, and each ordered structure
becomes deformed due to velocity fluctuations and eventually merges. After merging,
the structure became chaotic. Subsequently, the structure began to form a single-ordered
structure. This system takes a long time to reach an ordered state compared to the case
of d=1. In this case, d=4 the final ordered structure does not expand even after a long
wait; the reason could be the large initial separation between the two ensembles, where
the particles no longer experience a repulsive force after the formation of a single ordered
structure. Once the steady state achieved, a stable ordered structure was formed, and
the total number of defects (pink and green particles) remained constant in both cases
d=1 and d=4.
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Fig. 9. Merging of two ensembles with time τ (red particles – ensemble one, blue particles
– ensemble two), where the initial separation between the ensembles was d=4, the parameters
were λ=0.5 and rs =0.05, the number of particles in each ensemble N =50, and the total
number of particles in the final single ensembles NT =100. The system evolves to a steady
state, where it forms a hexagonally ordered structure, as shown by the Delaunay triangulation
at τ =100000, where black particles have six neighbors, pink particles have five neighbors, and
green particles have seven neighbors. The pink and green particles are the defects in the final
ordered structure.
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2.5

2.0

1.5

1.0

0.5

0

2.52.01.51.00.50-0.5-1.0-1.5-2.0-2.5

-0.5

-1.0

-1.5

-2.0

-2.5

= 4

0 20 40 60 80 100

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Initial separation = 4 

(a) (b)
y
c
m

xcm
S
ep

a
ra
ti
o
n

τ

Fig. 10. (a) Trajectories of the centers of mass of ensembles with time, and (b) the separation
of the center of mass of ensembles with time as in Fig. 9, where N =50 in each ensemble, λ=0.5,
rs =0.05, d=4.
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Fig. 11. (a) The evolution of the hexatic order parameter with time, and (b) the number of
defects with time as in Fig. 9, where N =50 in each ensemble, λ=0.5, rs =0.05, d=4.

Fig. 10a shows the trajectories of the center of mass of two ensemble for initial
separation d=4, and Fig. 10b shows the separation between the two ensemble over time,
from which we can infer that as the separation between ensembles increases, the total
number of rotations of the ensembles before merging increases, therefore, the separation is
constant until τ =40. Once the ensembles are merged, there is a drop in separation, and,
after merging, it fluctuates due to the chaotic structure. Fig. 11a shows the evolution of
the hexatic order parameter with time for a system, where it approximate constant after
the ordered structure formation. If wait sufficiently long, the final ensemble becomes
an ordered structure with a fixed number of defects, as shown in Fig. 11b after time
τ =2×104.
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Fig. 12. Merging of two ensembles when the initial distance between them is d=6; the
parameters λ=0.5, rs =0.05 for different time steps, where N =50 in each ensemble and the
total number of rotlets is NT =100.

Fig. 12 displays the two rotating ensembles with the initial separation between them
being d=6. As one can see, the two ensemble rotate around each other for some time, and
the individual ensemble is ordered at τ =32. As the distance between them decreases,
each ensemble deforms (τ =380) and eventually merges. Compared to the case when
the initial separation was d=4, this final single ensemble had more defects (pink and
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Fig. 13. (a) Trajectories of the centers of mass of ensembles with time; (b) the separation of
the center of mass of ensembles with time as in Fig. 12, where N =50, λ=0.5, rs =0.05, d=6.
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Fig. 14. (a) Hexagonal order parameter vs. time; (b) the total number of defects in the
system with time, as in Fig. 12, where N =50 in each ensemble, λ=0.5, rs =0.05, d=6.

green particles), and the structure did not achieve a hexagonal-order state, as observed
in the case when the initial separation was d=1 and d=4. Despite waiting a long time
for τ =20×105, a final steady state has not yet been achieved. This can be explained
as follows: because the initial separation between the two ensembles is quite large, it
takes a long time to merge and to form a single ensemble. However, after merging, the
distance between two particles is sufficiently large; therefore, the repulsive interaction
between the particles diminishes, which keeps the final ensemble disordered, and has a
greater number of defects.

The trajectories of the two ensembles are displayed in Fig. 13a that shows the two
ensembles rotating for a long time τ =300 and coming close to each other gradually. After
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merging, the ensembles had different trajectory structures due to the chaotic motion of
the particles. The separation between the two ensembles, calculated from the center
of mass of each ensemble over time, is presented in Fig. 13b, until τ =250 we can see
that the separation is constant with time, where particles in each ensemble organize
themselves into a hexagonally order structure due to the repulsive interaction, and also
each ensemble expands to some extend. The decrease in separation after τ =300 indicates
that each ensemble starts to deform and after merging fluctuates as both centers of mass
of the ensembles move in a single chaotic ensemble. The variation in the hexagonal-order
parameter with time is illustrated in Fig. 14a, which indicates that the final state is not
hexagonally ordered, even at a later time. To confirm this, we checked at τ =20×105 to
determine whether there was any ordering in the final ensemble. However, even after a
long wait, no hexatic-order structures were formed. The total number of defects in the
system appeared to fluctuate by approximately 35, as shown in Fig. 14b. One explanation
could be that as the ensembles are initially far from each other, the repulsive force between
the particles vanishes after merging.

3. Conclusions.

In this paper, we discussed a theoretical model for two rotating ensembles of rot-
lets. When only hydrodynamic interactions between particles were considered, the two
ensembles followed circular trajectories that were comparable to an approximate theor-
etical solution. When the repulsive force was considered along with the hydrodynamic
interaction, the two rotating ensembles showed the merging and formation of an ordered
structure even though there was no explicit attractive force between particles.
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