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This paper considers the hydrodynamic stability of Hartmann flow with respect to plane
two-dimensional perturbations of finite amplitude. On the basis of calculations made for
values of the Hartmann number equal to 0, 1, and 2, plots are made of the dependences of
the values of the critical Reynolds number, at which loss of stability of laminar flow condi~
tions sets in, on the amplitude of the perturbation.

The theory of the hydrodynamic stability of laminar flows with respect to infinitely small perturba-
tions (the linear theory [1, 2]), in spite of the considerable advances made, leads, in many cases, to a con-
siderable divergence from the experimental data. For example, with the gradient flow of a viscous New-
tonian liquid between parallel surfaces, in accordance with the linear theory, loss of the stability of lami-
nar flow conditions should set in at a value of the critical Reynolds number Recy~ 5000, while the experi-
mentally observed value is Regp~ 1000. This is one of the main stimulating factors for the creation of the
theory of a finite amplitude (the nonlinear theory, see for example [3-6]), the conclusions of which are in
incomparably better agreement with the experimental data.

The divergences between the linear flow and experiment are found to be particularly significant in
the investigation of the stability of the plane gradient flow of a conducting Newtonian liquid between parallel
surfaces, in a transverse magnetic field (Hartmann flow). In particular, at large values of the Hartmann
number, Ha, the linear theory predicts loss of stability at Regy~ 50,000 Ha, while it follows from experi-
ment that the value is Regp~ 225 Ha. The fact of the considerable divergence of the conclusions of the lin-
ear theory of hydrodynamic stability from the experimental data renders important a consideration of the
stability of magnetohydrodynamic Hartmann flow, within the framework of the nonlinear theory. A detailed
examination is carried out in the present article, in which the question of the stability of Hartmann flow
with respect to plane, two~-dimensional perturbations of finite amplitude is studied at small values of Ha.

It is well known that steady-state Hartmann flow, taking place in the direction of the x axis, is char-
acterized by the following distribution of the velocity Ug(y) and the induced magnetic field Bog(y) [7]:

chHa—chHa Rem shHay—y-shHa
Une(0) ==Gimamt — Bel)= 3~ ehba T ©

Here —1=y=1; Rey, is the magnetic Reynolds number, characterizing the conducting properties of the
liquid; the remaining definitions are the conventional ones. In writing the dimensionless expressions (1),
as the characteristic values of the length, the velocity, and the induction of the magnetic field, we take,
respectively, the half-width of the channel, the maximal velocity at the center of the channel, and the in-
duction of a constant external field, perpendicular to the walls of the channel and directed along the yaxis.

In a consideration of the stability of the flow with respect to perturbations of small but finite ampli~
tude, we must, in the first place, take account of the effect of the perturbations of the main flow which, in
this connection, cannot be described in terms of distributions (1). To such a deformed flow which, in what
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follows, we shall call the mean flow and designate by U®, B°, let there be applied small, but finite, pertur-
bations of the velocity u'{u'y, 'y} and of the magnetic induction b*{b'x, b'y}. Then, the total values of the
velocity and the magnetic induction

U=Uc(y) +u'(x, y, £), B=Be(y) +b'(x, 4, 1) (2)

must satisfy a system of the equations of magnetic hydrodynamics [7]
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where Re is the ordinary Reynolds number; Al is the Alfvén number [8]. Here, the generalized pressure
P, is equal to the sum of the ordinary and magnetic pressures; Pm=P+1/2A12B2 may be represented in
the form

Pm=P°m+p’my (4)
where PCp, relates to the mean flow, and p'y, to unsteady-state perturbations.
Following [3-5], we set
We ty; 0'x; by pm=ltx; ty; by by pmeio@—eh % .
U*y§ b*x; b*y; p*me—ia(x—ct)], (5)
where the sign * denotes the operation of complex conjugation; & is the projection of the wave vector on
the x axis; ac is the frequency of the perturbations; all the quantities uy, Uy, . .., ¥y are functions only

of y. Substituting expressions (2), (4) into system (3), and taking account of (5), after averaging with re-
spect to x=27/a we can obtain the following system of equations for the amplitudes of the perturbations:

2
L {[t*,Duy+ uyDu*,J— A2 [b*, Db+ byDb*J} = — 0—P01"~+M+A1293c, (6)
2 ox Re
Luy=iapn+u,DUc—AI2(Nb,+b,DB¢), 7
L{Dlu [24ia(u*uy—u* 2 24 g (b* * OP¢p, (
B wl*tia (W sy —u*yuy) — AR[D by |2+ia(b*cby—b*,by) ]} = — T , 8)
Luy=Dp,— Al2Nb,, (9)
2
lD(uyb*x—}-u"’ybx—uxb*y-—u*xb,,)=DUC+D Be , (10)
2 Ren
Loyby=u,DB¢—b,DUc— Nu,, (11)
Lawby=—Nuy,  iou+Duy=0, iaby+Db,=0; (12), (13), (14)

here L= [(D?~a?)/Re]—ia(U®—c); Ly, = [(D?—a?)/Rey]—ia(UC—c); D=d/dy; N=D+iaB®. Eliminating
Pm from Egs. (7) and (9), and taking account of (13) and (14), we can obtain

L(Duy—iquy) =u,D2Ue— Al2[N (Db, —iaby) +b,D?Be]. (15)°
Combining Egs. (9), (13)-(15), we have
i
aRe

. 2
Lyuy=[(Uc—c) (D*—a?) —D2Uc+ (D?—a?)?u, =% [N(D?—«a2) —iaD2B¢] b, (16)

In what follows, we shall assume that Rey « 1; under these circumstances, from Egs. (13) and (16),
there follows an equation containing only uy:

2
—_ 2z
aRe Dt (17)
This equation, which is the Orr-Sommerfeld equation for plane, two-dimensional perturbations [1, 2,

7], must be solved under the usual conditions of the reversion to zero of the velocity perturbations at the
solid surfaces of the channel.
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Fig. 1. Surface of the eigenvalues of @, —Pg, £~! of the
solution of Eq. (39); the dot-dash line corresponds to the
curve of neutral stability for the value Ha=1, obtained in
(7.
Fig. 2. Dependence of the critical values of the Reynolds
number on the amplitude of the perturbation.

The distribution of the velocity of the mean flow US(y) and of the induced magnetic field B%(y) may
be found from Egs. (6) and (10) which, after transformations taking account of (13) and (14), assume the
form

DU | aAppBo—22m oD 1y sy — A2 (6% by + brybi)], (18)
Re 0x 2
2
QQBC +DUc¢= %[b*xuy’l'”*ybx—b*yux—u*xbv]~ (19)

Setting

¥ty +utyuy =20%t;  b*:by+b* by =2am21;
b* gty + u*ybe— b* yup— u* by =2aam1s (20)

(a is a constant factor in the expression for the amplitude of the velocity perturbation; oy, is a constant
factor in the expression for the amplitude of the perturbation of the induced field), after integration of Egs.
(18), (19), we can find

i chHay—1
U (!/)—1+T(y)——c}m‘;_—l[1+T(1)],
y
T(y)= f[RE(az'n—APam""fz) chHa (y—8&) —HaaapntsshHa (y—&)]dg, (21)
0

hH .
+Tm(9) — S signy-Tm(D) |

_ Rem[shHay—yshHa
Bw) ‘H—a[ chHa—1

Y
Tm(y) = — | [Re(a?ri— Alan2w;) shHa(y—&) —Haaamtsch Ha (y—§)] d. (22)
0

It is not difficult to verify that expressions (20)-(22) satisfy the conditions

Ue(21) =Be (1) =Be(0) =0;  U°(0) =1;
71(0) =72(0) =13(0) =0. (23)
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With Rey, « 1, the perturbations of the magnetic field can be neglected in comparison with the per-
turbations of the velocity and, consequently, in the expressions for T and Ty,, we can discard terms con-
taining ay,* , and aapyT ;.

We now proceed {o the solution of Eq. (17).

For even perturbations of uy, the most dangerous from the point of view of loss of stability, Eq. (17)
must be solved with the conditions [1}

uy(—1) =Duy(—1) =Duy(0) =D3u, (0} =0. (24)

In accordance with the usual procedure, the two first independent parts of the solution of Eq. (17),
uy(i), uy(z), must be obtained from solution of the nonviscous equation

[(Ue—c) (D?— a?) — D2U°} u,=O. (25)

Representing the solutions of Egs. (25) in the form of power series with respect to Y~y Whereye is the
point at which U€(y¢) = ¢, we have

= (=0 San(y—ye)¥  w®=Peln (y=ye) u+F buly=y)" (26)
=0 k=0
where
a=0; a;=by=1; ay=0b,=A4,;
1 , x ,
Qg1 =Apt +m{a~/1k_1+;=:2[a2:4k_j+ (B+1) (k+2—2/) Ay aj=
(k=2):
13
Yit+!
b1¢—au+1"j§lTak—jy 27)
U i+2 )
DilUox(yc)
= — Wi _i(l=1), == e
g (Smers Juumn, 4=

In the solutions (26) and (27), the coefficients ¢y, by are determined under the assumption that, for
U%(y), it is sufficient to take Ugl(y), determined by the distribution (1) [3, 4]; the value of Po= D?*U%yc)/
DU%yc) in the expression for the solution uy(z) (26) will be determined as an eigenvalue in the solution of
the corresponding secular equation.

The general even solution of the nonviscous Eq. (25) must be written in the form
1, (W= Auy O+ 1, ®, (28)
where the arbitrary constant A must be determined from the condition
Du,(mX0) =0. (29)

The second pair of independent partial solutions of Eq. (17), uy(3), uy(4), the so-called viscous solu-
tions, can be found after the introduction of a new independent variable n

n=(y—yc)le, e=[aReDU(yc)}". (30)

Then, representing the solution of Eq. (17) in the form of a series in powers of ¢, and limiting ourselves to
the zero approximation, for determining uy(s) and uy(4), we have the equation

du, . d?uy
=0y e By 31
e in a2 0, (31)
two solutions of which can be represented in the form [1]
n n
w®= | g4 T~ 2 (32)
y = dT] ]/'r]H(‘) s ?(”])B/z dn;
noon
) — - 2 .
ull _.Zdn;/;ynH(Z) 1/3[? (ln) /zJ dn, (33)
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where H(D, 4 and H®), /5 are, respectively, Hankel functions of the 1st and 2nd kind, of the Y, order. Two
other solutions of Eq. (31), refined by taking account of the first approximation, may be compared with the
solutions uy(i) and uy(z) (26) of the nonviscous equation (25); this permits isolating the appropriate branch
in the solution uy(z) (26), bypassing the point y=y¢.

_In

7
5 <argn<F.

It must also be noted that Dug{?) — « at y— y; therefore, the solution uy(®) must be written taking
account of the so-called viscous correction to the solution of the nonviscous equation, as a result of which
the solution uy(z), instead of expression (26), is written in the form

P. S
u®= 22 (S () +nln e[ 1a0+ X bely—ye)* (34)

{the value of the function S(n) is tabulated in [9)). If we discard the rapidly rising partial solution uy(4),
the expression for the general solution of Eq. (17) can be written in the form

ty=ufD4 By, ®, (35)
where the arbitrary constant B is determined from the bouxidary conditions (24).
After the expression for the general solution uy (35) has been obtained, we can determine a’ry, Ac-
tually, from the definition of o27; (20) and Eq. (13), we have
azy = % (u*yDuy —uy,Du*,), (36)
after which, knowing a %r;,.we can proceed to plotting of the profile of the mean velocity (21), and to cal-
culation of its derivatives at the critical point y=y¢:
DUe (yc) =Q1+Q2aza Re, DzUc(yc) =P+ Psata Re, (37), (38)
where Qy, Qq, P;, Py are constants, calculated taking account of (36).

From the expression for the general solution uy (35) and conditions (24), we can obtain the secular
equation

1 W™ 1 u®
T Duyml-TDuy(ﬂ)Eqr(C)’ 39)

where ¥(¢) is a tabulated Tietjens function [1], and £ =(1+y,) X [®ReDU®(y,)1*/3. Solving Eq. (39) using
the Tollmin graphical method [1], with given values of the parameter of the problem i.e., the Ha number,
we can find the eigenvalues of yq, Pe, @, and €. We note that the above determination of P¢ as an eigen-
value of the secular equation (39), in the general case does not coincide with D*Ug(y)/ DUg(y), calculated
using the expression for the velocity distribution of Hartmann flow (1). In three dimensions (@, —Pg, )
the set of eigenvalues of the secular equation forms a hypersurface, on which, in particular, thereis a
neutral curve, corresponding to infinitely small perturbations. Figure 1 shows the hypersurface, con-
structed for the case Ha=1.

From expressions (37), (38), and the parameters of any point of the hypersurface (@, =P, e, we
can obtain an expression for the corresponding Reynolds number

PcQy—Py

S - ekt S (40)
Re= T @P- PG
and @ is a constant factor in the expression for the amplitude of the velocity perturbation
a2= 8~ 2Re @ (41)

- (12 ReZ Qz

Figure 2, on the basis of the results of calculations carried out in accordance with the above-de-
scribed scheme and performed in a BESM-6 digital computer, gives plots of the dependence of Recy on .
As was to be expected, with an increase in a, the values of Regr decrease substantially. In addition, with
a rise in the intensity of the magnetic field, there is a rapid rise in the values of Reqy, corresponding to
infinitely small perturbations, and a slowing down of the rise in the values of Regy, corresponding to per-
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turbations of finite amplitude. This fact must obviously be compared with the results of [10, 11], in which
note is taken of the ability of a magnetic field to suppress the turbulent transfer of energies between per-
turbations of different scales: with a rise in the intensity of the field, ever smaller scales become for-
hidden for the transfer of energy upward over the spectrum.

We note that the method discussed in the present article can be extended to the case of three-dimen-
sional perturbations of finite amplitudes, when the wave vector of the perturbations has projections on the
xand z axes. A corresponding study of the hydrodynamic stability of Poiseuille flow was made in [12]. As
preliminary calculations have shown, for small Hartmann numbers (Ha=0-5), in the case of perturbations
of arbitrary amplitude, the Squire theorem does not hold.

A study of-the magnetohydrodynamic stability of gradient Hartmann flow and of shear Couette Flow,
within the framework of the nonlinear theory, has been made using the energy method [13]. However, in
the investigation of hydrodynamic stability, the energy method gives a too low value of the critical Rey-
nolds number; obviously, this fact explains the divergence between the results of [13] and the present
article.
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