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We consider the problem of the hydrodynamic stability of a steady Hartmann flow of a con~
ducting fluid with a rheological power law with respect to plane infinitesimal perturbations.
Neutral-stability curves are obtained for certain values of the defining parameters.

There have recently been published a number of works [1-5], which investigate MHD flows of conduct-
ing non-Newtonian fluids, which have more complicated mechanical properties than an incompressible New-
tonian fluid. These investigations enabled us to detect in such flows a number of effects related to the pre-
sence of non-Newtonian properties in the fluid. In particular, interesting nonlinear effects related to the
formation of bands localized in space having nonzero shear stresses were detected in an investigation of
MHD flows of conducting fluids with a rheological power law in a transverse magnetic field [3-5]. For such

media, the rheological equation relating the stress-tensordeviator Sij and the deformation rate tensor fjj
has the form

Sij=2kn&)"_1fij (l, ]:1, 2, 3), (1)
where kp, n> 0, is the rheological constant of the medium, and w=\/'§ﬂ% is the second invariant of the de-
formation velocity tensor. Media having n> 1 are called dilatant fluids, and media with n<1 are called
pseudoplastic fluids; the case n=1 corresponds to a viscous Newtonian fluid. We should note that the quan-
tity np=kn w1 in [1] is effectively a viscous fluid, which for n=1 is not a constant for various flow regions,
and for dilatant fluids, when n > 1, vanishes at points at which w=0.

There is interest in investigating the stability of MHD flows of conducting non-Newtonian fluids with
a rheological power law, We note that investigations on the hydrodynamic stability of a number of plane
flows were carried out in [6,7] for nonconducting non- Newtonian fluids; furthermore, the stability of a shear
MHD flow of a conducting dilatant fluid was investigated in [8].

In the present study we investigate the hydrodynamic stability relative to infinitesimal two-dimensional
perturbations of plane, steady, gradient Hartmann flow of a conducting fluid with a rheological power law in
a channel in a transverse homogeneous magnetic field.

Let an isotropic conducting incompressible fluid with rheological law (1) undergo steady motion in a
plane channel under the action of a constant pressure gradient 8p/ 8x=const<0. The external magnetic
field with induction By =By=const is perpendicular to the nonconducting walls of the channel y=+1, and the
constant electric field E; is directed along the z axis.

The system of equations of magnetohydrodynamics then will have the form
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here 8 is determined from Eq. (1); the remaining notation is obvious.

As was shown in [3], solution of system (2) for such a formulation of the problem allows us to find
the steady-state velocity profile in the channel U[Ugx(y), 0, 0] in the form of an analytical implicit depen-
dence y =f(Uox), which in dimensionless form for the lower half of the channel =1 =y =0 can be written in
the form
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Hap?= (0By’L2 " 1v1™) /ky, is the square of the generalized Hartmann number, and F[k,, ky; m; 6] is the
Gauss hypergeometric function. Writing Eq. (3) for the characteristic values of length and velocity, respec-
tively, we take the channel half-width L and the quantity V=Pg /oBoz, where PE=— 0p/0x +0EB, is the ef-
fective pressure gradient, taking into account the effect of the Ampere force. The quantity y in (3) charac-
terizes the maximum velocity in the channel and is determined from the transcendental equation
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Equation (3) with account of (4) determines the velocity profile in the channel for each flow regime of
a pseudoplastic fluid (n<1), and for a dilatant fluid (n > 1) only for the case in which

Hanz<Ha*2=

2n [n+1\#
n—1\n—1]" (5)

If Hap? =Ha4?2, then at the center of the channel there appears a quasisolid zone, and the velocity distribu-
tion in the channel takes the form [3]
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The size of the quasisolid zone | y,| is determined from the equation
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We consider the question of the hydrodynamic stability of flows (3) and (6) with respect to infinites-
imal plane perturbations propagating in the x, y plane. Linearizing (2) in the usual manner and represent-
ing the y projection of the dimensionless perturbations of velocity u'y(x, y, t) and of magnetic field b'y(x,
y, t) in the form

wy=1p(y) explia(x—ct)]l, b'y=e¢(y) explia(x—ct)], (8)

where @ is the wave number, @¢c is the complex perturbation frequency, we can obtain the following system
of two differential equations for determining the functions ¥ (y) and ¢ (y):
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is the generalized Reynolds number for a fluid with rheological power law (1); Rey, =40 VL is the mag-
netic Reynolds number; Bgy is the field induced by the flow of the medium.

If Rem <1, then system (9), after we neglect small terms, can be reduced to a single differential equa-

tion in Y (y):

iHa,

Ly= aRe. D2, (10)

For n=1, Eq. (10) becomes the Lock equation, which is used for investigating the flow stability of a con-
ducting viscous Newtonian fluid in a transverse magnetic field, when Rey, <1 or Remy ~1[9-12].

If @ Rey is large, then the function #(y) in (10) can be represented by the asymptotic expansion

R0
w(y)—héom‘ (11)

and ¥ ; and ¥,, the first pair of independent solutions of Eq. (10), must be found from the nonviscous equa-
tion

[(Uox—c) (D?—0?) — (D?Vox) ] $ =0, 12)
which is an equation for determining the zero approximation ¥ ©) (y) in expansion (11). The solution of Eq.
(12) can be represented in the form of power series iny —y., where y¢ is the point at which Uyx(yc) =c;
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For calculating Donx(y) in (13) for flow regimes of a conducting dilatant fluid with a quasisolid zone (6) we
must use directly the analytical expression (6), whereas for flow regimes described by Eq. (3), we can use
the equation [3]

1
M1 = Us) =2 — 1<y <yo,
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Another pair of independent particular solutions of Eq. (10) $3 and ¥, are in the form
w =m
\P(y) =eXxp (fgdy), g=mz_0(‘1 Ren) 2 &m- (15)
By substituting (15) into Eq. (10), we can determine
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as a result of which we can obtain
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Q Solutions 3 and ¥, near y =y are found directly from Eq. (10)
with introduction of the new variable
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. . 1 0
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of € we can obtain
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here Hy/; ) and H1/3(2) are Hankel functions, and a= I/M . The asymptotic behavior of the Hankel
. n

functions enables us to identify the solutions §4 , 3 4 in correspondence with the solutions xy,,, 34, and also
to determine the necessary branch for bypassing the point ye:

7n n
—5 <agly—y)<yg

For an investigation of the flow stability of a dilatant fluid (6) we should investigate the behavior of
perturbations in the quasisolid zone yy=y =0, in which shearing stresses are everywhere absent and the
medium moves as an ideal fluid (Uy, =const). The equation for the perturbations ¥ (y) in an ideal fluid in
the zone y, =<y =0 is written in the form

(D2—a?)p=0. 20)
The solution of Eq. (20), which is even with respect to y =0, is the function
P(y)=Achay, A=const 21

(investigation of the even solutions of Egs. (10) and (21) with respect to y =0 leads eventually to smaller
critical values Rey°T than for the investigation of the odd solutions).

For flow regimes of dilatant fluids (n> 1) described by Eq. (3), as a result of which DUy (0) =0, it is
evident that 11)3,4(0) =0, and the derivatives Dzl)3,4(0) are singular. The singularity in the value of the deriv~
ative of the general solution of Eq. (10)

Y(9) = Crps+ Copz+ Caps+ Curp, (22)
calculated at the point y =0, can be removed if the following condition is satisfied [8]:
CsDyp3(0) + CuDyi (0) =0. 23)

The conditions for the general solution (22) being nontrivial, written using the conditions of adhesion at the
point y=—1,

Copi(—1) + Copa(— 1) + Capa(— 1) + Copu(— 1) =0,

, (24)
CiDPi(—1) + CoDpa(—1) + CsDps(— 1) + CuDpe(— 1) =0;
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the conditions for the evenness of the perturbations at the point y=0
C1D1(0) + C2Dp2(0) + CsDs (0) + CuDe(0) =0 , (25)

and conditions (23) lead to a secular equation, which after its terms have been estimated in order of mag-
nitude, can be represented in the form

’Dﬁh(—*l) D (—1)
Dps(—1) - Dy, (0) D2 (0) (26)
Vo= (=1 (-1
D (0) D2 (0)
The left side of Eq. (26) is expressed in terms of the tabulated function of Tietjens[13]; the right side must
be calculated using the solutions of ¥, and ¥, constructed above (13).

Investigation of the stability of a Hartmannflow of a pseudoplastic fluid eventually also reduces to find-
ing the eigenvalues of the secular equation (26), which in this case follows from the requirement that the
singularity in the general solution (22) and its first derivative be removed at the point y=0 for n<1.

For the case of flow regimes of dilatant fluids (n> 1) described by the distribution (6), the viscous
solution P3(y,) =0, and the derivative D{,(y,) is singular. The singularity in the value of the derivative of
the general solution $(y) (—1=y=y,) (22) is removed at the point y =y, when the following condition is sat-
isfied [8]:

C3sDys(yo) + CuDyo(yo) =0. 27)

From the requirement of continuity of the solutions (22) and (8), and also of their first derivatives, at the
point y =y,, taking account of condition (27) and the fact that ¥4(y,) =0, we have

C1[D1(yo) —ath (ayo)hs(yo) 14 Co [D2 (o) — ath (ayoe) a2 (yo)1=0. (28)

Conditions (27) and (28), together with the adhesion conditions (24), allow us to write the condition for non-
triviality of the general solution (22), which after carrying out estimates of its terms to order of magnitude,
and neglecting small quantities, reduces to the following secular equation:

Dyy(—1) Dy (—1) i

Dys(—1) [ D¥i(g0) —ath (aye)pi(yo)  Dipa(yo) —ath (ayo) bz (yo)

Ps(—1) Pi(—1) Pa(—1)
’D\bn(yo) —ath (ayo) $1(40)  Di2(yo) —ath (aye) pa(yo)

Figure 1 shows curves of the neutral stability on the @, Rey plane, constructed from the numerical
solution of Egs. (26) and (29) for several values of n and Hay,.
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