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A direct numerical simulation of liquid metal flow in an external uniform magnetic field was
performed for the cases of three and six cells, which are assumed to be part of a porous material.
Free-surface deformations were studied in terms of the external magnetic field direction and
strength and in terms of the pressure drop which was applied perpendicular to the direction of
gravitation. Numerical results showed that the magnetic field in the direction of the pressure
drop is most effective to decrease the height difference between the inlet and the outlet. In
contrast, the magnetic field directed perpendicular to the pressure drop and gravitation produced
the largest height difference.
Keywords: liquid metals, free-surface, MHD, plasma facing components, fusion reactors.

Introduction. Due to the very harsh conditions which the plasma facing compon-
ents (PFCs) must withstand in magnetic fusion reactors, a proposition has been made
to introduce a liquid metal (LM) free-surface layer [1]. The LM layer could potentially
be introduced and supported by utilizing porous materials [2]. Additionally, magnetic
fields via the Lorentz force could stabilize and shape the LM surface [3]. An important
part of using LMs for the PFCs is to maintain the LM layer which would mitigate the
damage to the solid components of the walls [1]. On the other hand, high LM velocities
should be maintained to decrease the LM exposure time and, thus, limit the plasma
contamination [1]. At the same time, surface instabilities should be minimized to avoid
LM droplets splashing in the plasma [4]. Numerical studies of LM PFCs often use porous
media modelling techniques to study the global characteristics of PFCs [2, 4]. Instead,
in this study, we have performed a direct numerical simulation to investigate the LM
free-surface flow around individual cells in an external magnetic field. On the scale of
porous cells, the current study advances the general knowledge of the system and could
be beneficial for determining which direction of the magnetic field relative to the LM
velocity and gravitation direction is preferable to maintain the desirable LM free-surface
conditions.

1. Formulation and methods.

CFD calculations were performed with the OpenFOAM software (https://openfoam.org/).
A structured mesh, where each cell consisted of 40 000 volume elements, was used
(Fig. 1a). A pressure difference between the inlet and outlet (Fig. 1b) boundaries was
applied. The top, bottom, and side boundaries were set to slip, and the pore walls to
no-slip boundary conditions (BCs). In two-phase calculations, the top boundary sets the
ambient pressure to represent the experimental setup (Fig. 1c).

The ElmerFEM software (http://www.elmerfem.org/) along with the EOF-Library
[5], which works as a communication between OpenFOAM and ElmerFEM, were applied.
Simulations were made similarly as in [6], where the numerical model is described in more
detail. In the current study, a two-phase simulation was performed, and only laminar
flow was considered. Since ElmerFEM considers the conductivity distribution calculated
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Fig. 1. The porous domain: (a) OpenFOAM calculation mesh (shown for one cell); (b) inlet
and outlet positions in a 6-cell numerical model; (c) analogous experimental setup.

by OpenFOAM, the typically used EOF-Library setting for updating electromagnetics
(whenever the maximum relative velocity change in a volume element exceeds 50%)
was not appropriate because the velocity variation was much slower than the surface
deformations, which leads to non-physical results. Thus, the parameter was decreased to
5%. Surface tension was set to zero to decrease the computational difficulty of the study.
Physically, it represents the Weber number ≫ 1, and this requirement was sufficiently
fulfilled in the model setup. Additionally, it represents the situation in fusion reactor
PFCs, when due to the large heat flow the LM surface reaches the boiling point.

The characteristic length is defined as L=0.5
√
S, where S is the surface area of

the cell boundary (Fig. 1a). For result presentation, the length, time, pressure, and the
flow rate were scaled according to L, L2/ηliqm, ρliqmη

2
liqm/L

2, and Lηliqm, respectively.
Then, the dimensionless velocity v is obtained by scaling the velocity with ηliqm/L. The
Reynolds number (Re) is defined as the maximum v in the liquid phase. A set of uniform
external magnetic field values B= [0, 1, 2, 3, 4] T was used in the parametric calculation
which correspond to Hartmann numbers Ha=BL

√

σ/ηliqmρliqm= [0, 3.38, 6.76, 10.15,
13.53], respectively. The dimensionless pressure P , ranging P = [13 : 535], was set at the
inlet.

Table 1. Geometrical and material parameters.

Parameter Symbol Value

Liquid phase viscosity ηliqm 3.35× 10−7 m2/s
Liquid phase density ρliqm 6400 kg/m3

Gaseous phase viscosity ηair 1.51× 10−5 m2/s
Gaseous phase density ρair 1.420 kg/m3

Surface tension γ 0N/m
Electrical conductivity of liquid σ 3.27× 106 S/m

Free fall acceleration g (–9.81, 0, 0)m/s2

Characteristic length L 8.66× 10−5 m
Cell side length – 5.4× 10−4 m
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2. Results.

Initially, a steady-state calculation was performed for a single-phase setup without
the external magnetic field (Fig. 2a, Fig. 3a). Next, a steady-state single-phase calcula-
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Fig. 2. Dimensionless velocity and pressure distribution for one-phase steady-state simulation
with the inlet-to-outlet pressure drop P =134.
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Fig. 3. Dimensionless velocity and pressure distribution for one-phase steady-state simulation
with the inlet-to-outlet pressure drop P =401
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tion was performed with the external magnetic field in the x-,y-,z-directions (Fig. 2b–d,
Fig. 3b–d). In the two-phase transient simulation with the one row (three cell) geometry
(Fig. 4) a set of pressures P = [13, 67, 134] was used for parametric calculation. For
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Fig. 4. Dimensionless velocity and pressure distribution for two-phase transient simulation
with the inlet-to-outlet pressure drop P =134.
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the two row (six cell) geometry (Figs. 5–7), a set of dimensionless pressures P = [200,
267, 334, 401, 468, 535] was used. In hindsight, covering the whole pressure range with
the two-row geometry would have facilitated the result interpretation, but due to time
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Fig. 5. Dimensionless velocity and pressure distribution for two-phase transient simulation
with the inlet-to-outlet pressure drop P =267.
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Fig. 6. Dimensionless velocity and pressure distribution for two-phase transient simulation
with the inlet-to-outlet pressure drop P =401.

limitations, the one-row pressure range calculations were not repeated with the two-row
geometry. Comparing two-phase and one-phase simulation results, the effect of introdu-
cing a magnetic field is similar in terms of the velocity distribution in the liquid phase.
However, in the two-phase simulation, the maximum velocity increases due to the height
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difference between the inlet and the outlet. Applying a magnetic field in the direction
of the main flow (Fig. 4c, Fig. 5c, Fig. 6c, Fig. 7c) results in a surface profile which is
like in the case without the external magnetic field (Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a).
On the other hand, applying a magnetic field perpendicular to the main flow direction
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Fig. 7. Dimensionless velocity and pressure distribution for two-phase transient simulation
with the inlet-to-outlet pressure drop P =535.
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(Fig. 4b,d, Fig. 5b,d, Fig. 6b,d, Fig. 7b,d) results in a different surface deformation when
more of the solid walls’ surfaces are uncovered.

In Fig. 8 we have compared the flowrate and pressure drop curves for the one-phase
steady-state simulations (Fig. 8a) and for the two-phase transient simulations (Fig. 8b).
Here, the flowrate was calculated to the equivalent for the two-row geometry. In steady-
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Fig. 8. (a) Flowrate dependence on the inlet pressure in one-phase steady-state simulations,
and (b) two-phase transient simulations. (c) Height difference dependence on the inlet pressure
in two-phase transient simulations.
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state simulations, the magnetic field in the flow direction (y-direction) affects the flowrate
the least. External magnetic fields in the direction perpendicular to the flow (x- and z-
direction) affect the flow in the same way.

Gravity in this setup is in the negative x-direction, so the magnetic field perpendic-
ular to the gravitation (in the z-direction) produces a stronger braking effect on the flow
than the magnetic field in the direction of gravitation (x-direction).

Additionally, the height difference between the inlet and the outlet was calculated
(Fig. 8c). Due to the discontinuous inlet and outlet, in practice, the inlet height was
calculated as the maximum liquid metal height in the domain, but the outlet height was
the liquid metal height at the outlet. In the case when the surface level near the outlet
was between the first and the second row, the height was calculated at the closest cell
connection between the rows, which is 1.51 dimensionless units from the outlet.

In the two-phase transient simulations (Fig. 8b), the flowrate seems to have a different
tendency for the smallest pressures. Moreover, there seems to be a jump in the inlet-to-
outlet height difference between P =134 and P =200 (Fig. 8c). This could be because
of the influence of using two different geometries (one-row geometry with three cells for
smaller pressures and a two-row one with six cells for larger pressures). However, the
sudden changes were most likely due to the liquid reaching the second row.

It is difficult to see a clear dependence on the external magnetic field. The differences
at larger pressures could be simply due to the difficulty of precisely calculating the height
at the outlet because of some air pockets which might disappear if the simulation was
continued for a longer time. Additionally, the inlet height calculation may have been
affected by the number of rows in the model, especially when the liquid is near the
top boundary (compare, e.g., Fig. 5a and Fig. 7a). Nonetheless, there are few general
tendencies for the choice of the direction of the external magnetic field. The magnetic
field in the z-direction results in the largest height difference. In contrast, the inlet-to-
outlet height difference stays the same or even slightly decreases when the magnetic field
is applied in the y-direction.

In the setup of this study, the pressure drop was applied only perpendicular to the
gravitation direction. An additional study would be necessary to investigate surface
deformations in the external magnetic field for other relevant angles between gravitation
and the applied pressure drop.

3. Conclusions.

It is possible to perform a two-phase direct numerical simulation of liquid flow in a
few cells of a porous medium exposed to a uniform external magnetic field.

Qualitatively, the direction and the strength of the magnetic field affect the liquid
flow similarly as in a single-phase simulation.

In the two-phase simulation, the magnetic field directed perpendicular to the applied
pressure drop and gravitation direction has the strongest braking effect on the flow.
Consequently, a larger surface of the solid wall is uncovered compared to the case without
the magnetic field. In contrast, the magnetic field parallel to the applied pressure drop
has the least braking effect.

The obtained numerical results show that the magnetic field parallel to the ap-
plied pressure appears to slightly decrease the height difference between inlet and outlet,
whereas the magnetic field directed perpendicularly increases the height difference. How-
ever, a clear relationship between the applied pressure difference and the inlet-to-outlet
height difference was not observed. Instead, there was a sudden dispersion of the height
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differences at higher pressures. Thus, before making more general conclusions, these
results should be reexamined, preferably with a larger cell matrix.
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